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NOMENCLATURE

We apologize for not using familiar engineering notational practices but there is a good rea-
son. Few special notations are needed in this paper and so a simple system ( avoiding brackets,
braces, and underlines ) suffices.

whole numbers j ..., n (Fortran convention)

real numbers a, , •

column vectors a, b, • (except i, ... , n, and t for time)

components of vectors a(1), a(2, (2),

matrices- A, B, • • .
identity matrix I " ( el , ... e

imaginary unit i (not j)
transpose t or A'
time derivative u

norm := - + +

1. INTRODUCTION

In the previous State-of-the-Art survey there was no chapter devoted exclusively to eigen-
viluc evtraction. There is little point in casting back to 1950 and we shall confine our attention to
the last decade.

The primary achievement of the 1970's was the incorporation of robust and fairly efficient
eigenvalue solvers into general finite element packages such as NASTRAN, SAP, ADINA, ....
Consequently the dynamic analyses of structures with about 103 degrees of freedom ( d.o.f. )
became routine activities all over the engineering world. Systems with I04 d.o.f. were analyzed
and even 106 d.o.f. was uot a pipe dream. See 18). 1101, 1201, 1211, (221, 1281, 1381 for example.

These programs permitted more intensive analyses of aircraft designs and so helped in the
production of the recent fuel-efficient jetliners, ( e.g. Boeing 767 ).

In order to set the stage for the rest of the paper some facts of life must be appreciated.
First, the arithmetic effort required to compute all the eigenvalues of an n X n symmetric matrix
is less than the effort required to form the product of two such matrices. The only requirement on
n is that it be possible to hold two full n X n arrays in the fast memory of the computer. These



2

matrices are said to be small for the given computer system. See [11, [21, and [61).

The standard eigenvalue problem for small matrices is solved whether the matrix is sym-
metric or not. The methods are utterly reliable and fast, see section 2. Fortran programs are
available in most computer centers. They can be found in libraries'called EISPACK, IMSL, and
NAG, among others. Even if an engineer wants only 3 eigenvalues ( or eigenpairs ) it is usually
best to find them aN when the matrix is small. The largest computed eigenvalue will be accurate
to almost working precision ( i.e. 13 correct decimals if the unit roundoff is 10- 14 ) and the smaller
eigenvalues have the same absolute accuracy as the largest one. See [11. Programs for extracting
eigenvalues of small matrices should be used like the built-in subroutines for cosine or square root.
There is no need for the engineer to write his own version. For small matrices it is all right to
reduce the general linear eigenvalue problem to standard form explicitly, using matrix multiplica-
tion. See Reduction II ( with a = 0 ) in section 5.

For large matrices the situation is different. Nevertheless it is still not advisable for an
engineer to consult a book and try to implement methods described there.

During the 1980's there was gradual acceptance of the fact that the successful Subspace
Iteration method, on which the 1970 eigensolvers were often based, was not the last word in
efficiency. See [5], [41J. Some versions of the Lanczos algorithm promised to be an order of magni-
tude more efficient. For example, a block Lanczos eigensolver, produced by Boeing Computer Ser-
vices under the leadship of L. Komzsik, was incorporated into the McNeal-Schwendler NASTRAN
package during the summer of 1985. This sophisticated code does not require that any of the vec-
tors it computes remain in the fast store ( i.e. virtual memory has been accepted ). This means
that the program can analyze quite large structures on fairly small computers ( large minis, such
as the VAX 750 ). See 1261, 1381.

All these eigensolvers can be vectorized to some extent but they do not really exploit the full
power of machines such as the CYBER 205 or the CRAY 2. See [571. The situation may well
have been rectified by the times these words appear in print.

In the remaining parts of this paper we will try to convey " the big picture " of the state-
of-the-art in modal analysis and buckling. We shall point the reader to the open literature for
more details and justification. Inevitably some valuable work will have been omitted from the
references. Slighted researchers are urged to contact the author and fill the gaps in his knowledge.

2. TECHNIQUES FOR SMALL MATRICES

We give a brief outline of the methods used for small problems. If A is symmetric it is
reduced to tridiagonal form T ( i.e. t (j, k) = 0 if I j - k I > 1 ) by explicit orthogonal similarity
transformations. If eigenvectors are wanted the transformation are accumulated and the cost of
this aspect dominates all the others. The matrix T is reduced to diagonal form A by the QR algo-
rithm. Fewer than n3 multiplications are required to obtain all n eigenvalues. If all the eigenvec-
tors are wanted the cost rises to 5 n 3 .

For unsymmetric matrices the pattern is similar. The matrix B is reduced to Hessenberg
form H ( h(j, k) - 0 if j > k+1 ) by explicit orthogonal similarity transformations. Then H is
reduced to block triangular form by the QR algorithm. The blocks on the diagonal are either
2X 2, for each complex conjugate pair, or lXI, for each real eigenvalue. The cost for all eigen-
values is about 5 ns multiplications, for eigenvectors too the cost rises to 15 na.

The general linear eigenvalue problem A - XB may be solved without inverting A or B by
use of the QZ algorithm. This reduces A to block upper triangular form A and B to upper tri-
angular form B. The diagonal blocks of A are either 2X2 or I X. The cost is approximately
15 n3 multiplications. The best reference for all these algorithms, and more, is the EISPACK
guide, see [1,21. The reference for learning about the computation of eigenvalues is Wilkinson's
classic tome " The Algebraic Eigenvalue Problem " ( Oxford Univ. Press, 1966 ). It should be
stressed that the understanding engendered by that book was translated into action in the
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Handbook for Automatic Computation : vol. II, Linear Algebra ", ( Springer-Verlag, 1971 ) and
the EISPACK, NAG, and IMSL program libraries are all based on it.

3. PROBLEM DESCRIPTION

A good place to start is the equation of motion of some structure. It may be written --

Mi + Ci + Ku = f (t), t >0,

where the vector u 0 n(t) represents the state of the system and M,C, K are square matrices.
The modes are those solutions of the homogeneous equation ( i.e. f m 0 ) with the special form
u(t) zz exp( iwt )z ( i = -1 ), where z is a fixed vector. Thus the natural frequency w, and z,
the mode shape vector, must satisfy

(K + iwC -_ W2 M)z = 0.

When C = 0, each eigenpair ( w, z ) represents one of the free modes of vibration of a conserva-
tive model of the structure.

The algebraic eigenvalue equation given above is quadratic in w but, when C = 0, is linear
in w2. The computation of w and z is more or less difficult depending on the structure of K, C,
and M. We list some important cases in increasing order of difficulty. See 171, [141, [331, [341.
a) C = 0, K and M symmetric, positive definite ( = s.p.d. ).
b) C = 0, K s.p.d., M symmetric, positive semi-definite, and singular.
c) K, C, M all s.p.d. ( dissipative system due to friction).

d) C skew-symmetric, K and M s.p.d. ( rotating systems).

e) C = 0, K s.p.d., M sym. but indefinite ( for buckling analysis, where X = w2 is not neces-
sarily real ). See [761.

f) C symmetric, indefinite, K not symmetric, M s.p.d. ( rotating, dissipative structures,
X = w2 need not be real ). See [66J.

Although cases c, d, e, f are being solved it is fair to say that they are still research topics as
far as eigenvalue solvers are concerned. See [161, [281.

Key Features
Common to all the cases listed above are the following special requirements:

i) Only a few pairs ( w, z ) are wanted, rarely more than 100. For vibration analysis, where W
is always positive, there are two standard demands; either all frequencies in a given interval
or the m fundamental modes where 1 < m < 100.

ii) Most of the elements in K, C, and M are zero. When finite elements are used to construct
the matrices then they have a loosely banded appearance, depending strongly on the connec-
tions within the structure. Also the number of degrees of freedom keeps growing. In the
1980's 103 is typical but 10r is to be expected.

4. GENERAL COMMENTS

The special character of these tasks, embodied in i) and ii) above, turns our attention away
from traditional methods that seek to diagonalize a symmetric matrix by means of a sequence of
similarity transformations. See 1791. Most similarity transformations spoil the sparsity pattern in a
matrix and are not cost effective when only 20 eigenvalues out of, say, 2000 are wanted.

The preferred methods today are all sampling techniques. They create a matrix ( or
better, a linear operator ) and apply it to a sequence of carefully constructed vectors. From these
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transformed vectors the dominant eigenvectors and their eigenvalues can be approximated.

The Inertia Count
However there is one quite different technique that is often used to check on the computed

results. It is an application of Sylvester's Inertia Theorem. If K and M are symmetric, r is any
real number, and if Gaussian elimination, without interchanges, is performed on K - rM to pro-
duce the triangular factorization

K - rM = LDLe

where D is a diagonal matrix containing the pivots and L is lower triangular with ones on the
diagonal and the multipliers elsewhere, then

I the number of eigenvalues of the pair ( K, M ) that are less than r is just the
number of negative pivots in D I See (4, P.46/

If any pivot is tiny it is best to change r by say .001% and do the factorization again.

This useful, though expensive, facility is sometimes called a Sturm Sequence count for odd
historical reasons. It is used to check that no eigenvalues have been missed by the algorithm. See
[lo, [7o.

The arrival of vector computers at one end of the range and mini- and micro- computers at
the other has made it virtually impossible to give simple cost comparisons between methods. See
[75). Nevertheless it often happens that the application of the operator ( or matrix ) to a vector
dominates all other costs. So it is not unreasonable to compare the number of matrix-vector pro-
ducts required for the computation by various algorithms. Data transfer is also important.

When K and M have narrow bandwidth b the cost of the triangular factorization men-
tioned above is quite low ( b n ops ) and consequently each step of inverse iteration is also cheap.
If only three or four eigenpairs are wanted it is quite attractive to find them one at a time using
combinations of zero finding techniques. The determinant search method of Bathe is a good
example of this approach. See [71 for more details.

S. REDUCTION TO STANDARD FORM

The various problems described above each involve at least 2 matrices. Yet the most power-
ful techniques require a single matrix or operator. As will be explained below it is clearer to use
the word operator than matrix. There are three ways to reduce the problem

(K - w2M )q = (1)

to standard form

(B- XI )z =0 (2)

Let M = i be the Cholesky factorization of M. Here E is a lower triangular matrix.
Sometimes f is called the square root of M but this is a bad abuse of language because the square
root of M is defined to be the symmetric positive definite matrix X that satisfies X2 _ M.

I. Premultiply ( 1 ) by E and seek /q in place of q to find

( f-K - 2) q f o (=3 )

Thus the operator B ( = .- K, -1 ) is symmetric. Of course M must be positive definite so the
application of (I) is limited. There is no need to form the matrix B explicitly. See 143j.

Method (1) is a poor one simply because we want eigenvalues w, w, ...2 close to 0 and these
are much more expensive to compute than those near 0o.
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H. Take any convenient value o near the wanted eigenvalues. The value 7 = 0 is a common but
not very effective choice. Rewrite ( 1 ) as follows

(K - aM - (w' - a )M )q = 0,

((w - a )I -( K - aM )'M )q= 0,

W2( - a )-Ij ' K - aM )-0 £, f . (4)

Thus

B = ,( K - aM )-'L.

Again there is no need to form B explicitly. The product z = By is evaluated in 3 steps: w t Lv;
solve (K - aM )u - w for u; z .- Vu.

Any effective method for solving ( K - aM )u - w may be used, direct or iterative. If the
size of K and M is not too great then direct methods are popular. This requires a preliminary
factorization,

K - aM = LDLV

as described in section 4. See [191, [601.
Note that B is symmetric and its eigenvalues '\, X2, ..., are related to the wanted frequencies

by
I

k= (w- k =1, 2,

It is some of the largest eigenvalues of B that are wanted and these are the easiest to compute.
Note also that M need only be positive semi-definite, I can have some 0 elements on its diagonal.

The considerable cost of factoring K - aM is handsomely offset by the rapid convergence of
the iterative methods to be described later.

iii. It is not necessary that B be a symmetric matrix. It is sufficient that it be similar to a sym-

metric matrix. Consequently the last step in deriving ( 4 ) may be omitted. Thus

( (w 2 - a ) - ( K - oM )-'M )q = 0,

and

B-- K - aAf)M.

The eigenvectors are not changed at all.

There is a price to pay for this convenience. At one or more places in the algorithms it is
necessary to multiply a vector by M whereas use of reduction 1I avoids this step. See (60).

Both II and IIl are satisfactory, with a slight preference for III because it is simpler. It will be
shown in a later section that the algorithms can be written so that there is no need to know
whether or not M is singular or ill-conditioned. See 1481 and [681.

The important point is that the user supplies a subroutine that returns By for any given
vector v. This embodies the linear operator that sends v into By. Yet the matrix B is never
formed explicitly. The goal now is to call that subroutine with a sequence of vectors v and calcu-
late from the output the dominant few eigenvectors of B.
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8. SUBSPAC ITERATION ( ealled SI )

In Europe this is called the method of Simultaneous Iterations. See 1121 and 1311. For-

tunately it has the same acronym SI.
Programs based on this method ar e in widespread use throughout the engineering commun-

ity for eigenvalue extraction. See 171, 18, 11, 1121, 1311. The erectivee of the pogrlms comes

(rota sophisticated implementation whose details cannot be described here. In other wrds there

is still some art ( or judgement ) required to make the implementations robust. One of the
cleverest implementations is H. Rutishauser's RITZIT algorithm presented in j79] but actually
written in mple-196. For a brief account of it see t59, Chap.141 and J651. RITZIT had little

influence on engineers in the U.S.A. who, in the course of time, rediscovered some of

RutishauSer s devices.
The basic idea is very simple. It is a block power method. The power method takes a start-

ing vector v and keeps applying the operators B to produce the so-called Krylov sequence ( or

pnvow r v nde p a

powerseque ce )v, B , B (B ), B 3, B 4,"

For almost all v the vector Bkv points in the direction of the dominant eigenvector of B as k

-0In a blck version, with block sile m, one starts with m starting vectors, the columns of a

n X m matrix V(A ).It is best to start with an orthonormal set, i.e.

( Vo}))tv(o) 
-

The trouble with forming BiV0°) for large k is that all its columns are dominated by the dominant

eigenvector. This defect is easily cured by orthonotmalizing the current set of m vectors from

time to time. If this is done every time B is applied then one obtains one version of Si. However

there is more thin one way to orthonormalize a set of vectors although the Gram-Schinidt process

is the most popular, In the present context there is a better wly, use the Rayleigh-Ritz approxi-

Let V be any n X m matrix whose columns are linearly independent. There is a pretty recipe

for obtaining the s set of approximate eigenvectors using just linear combinations of V's

columns. We present it with implementation Ill of section 6 in mind.

The Ra lh~t AvproxImatlons_ tr!.. Y

1. Form the m x m proiection matrices ( often called interaction matrices)

C -- VtIBV), E V(V

2. Solve the full m X m generalized eigenvalue problem ( C - OE )gi - 0, i - 1, ... , m to Bud

G = gt, "", g" ) and 0 :=a diag ( 01, ... , 0m ). Normalize the g so that gEg 1, i 1,

3. Form W - VG.

The vectors w,, ..., tom are the desired approximate eigenVectOrs. In general some of the w will be

much better approximations than others. The numbers $1, ..., 0,, are the Rayleigh-Ritz approxi-

mate eigenvalues.

The essential SI algorithm is to keep repeating these Rayleigh-Ritz approximations.

I AL oS-thm
1. pick a full rank V")
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2. for k = 1, 2, ..., until satisfied

a) obtain Rayleigh-Ritz approximations g k), 0tk)) .... (g$ ), 0 ) from Vkl)

b) compare 0?*) with st - l) to monitor convergence, j - 1, .... m
c) if not satisfied set

v k) :i V(k-t)g k) for each bad j,

v k) : vk-), if 6j ha8 converged.

For a fuller discussion of SI with attention to more details of implementation see:
K. J. Bathe and coworkers [7, Chap. 121; 181 for his latest.
A. Jennings and coworkers [33, Chap. 10), and, in turn, [11], [121, [31), [34).

Both groups have an engineering orientation. The numerical analysts were mentioned at the
beginning of section 6.

Important ingredients to successful usage of SI are
1. Choice of m

2. Choice of V(O)

3. Mechanisms for avoiding convergence to already known eigenvectors.
Good variations of SI have been incorporated into a number of FEM packages.
There is only one fundamental criticism to be made of SI it may use considerably more calls

to the operator subroutine than are necessary. The explanation is very simple. At every step in S[
the approximations 0"-) are overwritten with better ones in yk) This overwriting discards infor-
mation and the penalty can be significant. In fact it is not necessary to increase storage costs to
achieve a substantial saving in computational effort.

7. THE LANCZOS APPROACH

The power of the Lanczos algorithm comes from a fortunate approximation property of
Krylov subspaces. Although it is quite surprising it is not difficult to state.

It is well known that the power sequence ( see the third paragraph of section 6 for the power
sequence ), started from a random vector, converges almost always to the dominant eigendirection
of the operator B. In principle a large number of steps might be necessary. Suppose we ask a
different question. After k-1 steps of the power method how many eigenvectors of B could be
approximated to 5 decimal accuracy by taking suitable linear combinations of our k vectors

v, By, B2 v, ..., Bk-iv ?

Remember that 5 decimal accuracy in an approximate eigenvector y means 10 decimal accuracy
in the approximate eigenvalue 0 = ( ytBy )/( ytMy ).

Now for k = 1 the answer is none and for k = n, the number of degrees of freedom, the
answer is n. However these extremes are not relevant. The amazing observation is that for values
of k between 20 and n/5 the answer is about k/2. As k increases the hit ratio improves but for
most applications in Mechanics it is about 50% or better. Consequently it should be possible to
computer 25 eigenpairs with only 50 calls on the operator ( i.e. 50 matrix-vector products ). Yet
after 50 steps the power method might well have produced only a 3 decimal approximation to a
single eigenvector.

When one recalls that the starting vector is chosen at random this phenomenon is remark-
able. The eigenvalues computed in this way will be those closest to the number a that occurs in
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the definition

B (K - M'M.

The phenomenon does not depend on n, the number of d.o.f.
The same thing occurs with the block power method. Suitable combinations of all the vec-

tors in V, BV, B V, ..., B V ( i.e. 0m matrix-vector products ) will usually produce 3m accurate
eigenvectors. The block approximation is slightly weaker than the single vectoi case which would
give 9m/2 eigenvectors.

The difficulty in trying to exploit the phenomenon is that the power sequence is a hopeless
one to work with in practice; it is nearly linearly dependent. The Lanczos algorithm computes a
different set of vectors that nevertheless has the same approximation property as the power
sequence. What is even better is that it is not necessary to keep all k Lanczos vectors in the fast
memory.

The original attraction of the Lanczos algorithm came from the so-called three term
recurrence relation presented as far back as 1950 by Lanczos in [301. It can be described as fol-
lows.

Theoretically the Lanczos vectors are what you get by applying the Gram-Schmidt pro-
cedure, using the M-inner product, to the power vectors but that is not how they are computed.
Call them q1, q2, ..., q,. Then q, := v / IIvIIM. Let us consider the construction of q,+ from q1,
q2, -- qb.

As in the power method B is applied to the last term in the current sequence to give F :=
Bqt. Now we seek the part of F that is M-orthogonal to qj, q2, ..., qk. There is a beautiful result
that shows that F is already M-orthogonal to q1 , ..., q,-2 ( in exact arithmetic ). So it is only
necessary to execute

F := Bqk,

r qk-:O k - qk0 k

where

ak :- F = Mq (- ,
atk :- F'Mqj, F ( - qk--t )'Mqk

Then normalize r as follows

qk+l := r/ k+l.

Unravelling this computation reveals that

Bq, ' qk-1rk + qak + qk+1ik+l

and this is the three term recurrence relation. A little more theory shows that, in exact arithmetic,

=f k 2

so that there is no need to compute the Yk. Theoretically the old Lanczos vectors q1 ... , qk-2 can
be sent off to secondary storage since they are not needed again until the approximate eigenvec-

tors are computed at the end.

The coefficients aj, 0( go to build up a tridiagonal matrix Tk as indicated,

of 1 02

2 C12 03

.k Ok

,,~~~O akia I
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This matrix holds all the essential information. Notice how little work there is in computing qk+l
compared with one step of subspace iteration (SI).

Suppose k is the last step. To complete the calculation we proceed as follows,

1) Compute all eigenvalues and eigenvectors of Tk, TkaI = -- O, i-1, ..., k where
k

= fj) 1.

2) Select those pairs ( 0j, 8j ) with the property I s,(k) I < 10 " .

3) For the values of i found in 2) recall the Lanrzos vectors and compute

=j q 1 (1) + q2 8j(2) + - + qak).Y

The pairs ( 6j, y( ) are approximate eigenvectors with the property

11 Byj - y IIM = 10'0k+l.

The 9j will be accurate to about 10 significant figures. More precisely there is an eigenvalue X of
B such that

I - 0€1 __ lO- 0
1/ gap

where gap = min I p - I - min I 8j+1 - I, I Oi - Oij I ) and j is the closest eigen-
value of B to 8j except for X. See 1561.

The description given above ignored the important issue of detecting k, the right step at
which to stop. See [261, [561 and [691.

Orthogonality Loss

The preceding section may seem too good to be true. And it is. Finite precision arithmetic
prevents the Lanczos vectors from being M-orthogonal or even close to it. In Fig.1 we show that
matrix QtMQk, where Qk = ( qj, ..., qk ). It should be the identity matrix.

This defect gave the Lanczos algorithm a bad reputation and only a few engineers per-
severed with it during the 1960s. See [771 & [78]. In 1971 C. C. Paige, in a remarkable thesis, was
the first to explain this orthogonality loss in a satisfactory way. Once this understanding spread it
was not difficult to find ways to handle the problem. In particular he showed that the original
algorithm is not unstable; you can extract all eigenvaiues.

It is beyond the scope of this brief paper to expound Paige's contribution. For a text book
account for numerical analysts see 1 59, Chap.13 ] and for a more detailed, but lucid, presentation
see two papers by Paige, [51] and [52].

What we can say is that there are three different ways of responding to orthogonality loss
when executing the three term recurrence. The first, advocated by Paige himself ( though not in
the context of Mechanics ), has been fully developed by Cullum and Willoughby, see [13], [14], and
also Parlett k Reid [55]. The idea is to keep the original algorithm. The result is that the method
becomes truly iterative, it does noL stop at step n. Nevertheless it is possible to deduce the true
eigenvalues of B from the computed tridiagonal T. However the number of steps required grows
by a factor of 2 or 3 at least. Moreover eigenvectors must be computed separately. These pro-
grams seem best suited for computing all the eigenvalues of B. Engineering development along
these lines are 1181 and [771.

The opposite extreme explicitly applies the Gram-Schmidt process to make Bq1 orthogonal
to qj, q, ..., q-2 at each step. Besides the cost of this extended computation there is the need to
access all Lanczos vectors at each step. However the minimal number of steps will be taken. For
short Lanczos runs of about 20 steps the cost of this approach is not heavy. See [10], [19], [20],
[211, (281, [491, 1501, and [751.
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A third approach is based on the observation that it suffices to maintain semi-orthogonality
to enjoy the main advantages of full-orthogonality. If tVie unit roundoff in the arithmetic unit is e
then two vectors of norm one are semi-orthogonal if their inner product does not exceed V1 in
magnitude. Moreover semi-orthogonality among the Lanczos vectors can be maintained for about
1/3 the cost of maintaining c-orthogonality. In particular the minimal number of Lanczos steps
will be taken. See (58J, [691 and [711.

It seems likely that in Mechanics it will be preferable to keep the number of calls on the
operator B to a minimum. For applications in which the whole spectrum is wanted the first
approach is the most attractive.

To complicate the issue there is the extra possibility of using block versions of the Lanczos
algorithm. That leads to the next section.

Block Lanczos

Just as the power method is readily extended to a block form ( namely subspace iteration
so is the Lanczos recurrence extended to work with several vectors simultaneously. A block size I
is chosen and a sequence of n X1 Lanczos matrices Q 1, Q 2, ... , Qk is constructed to satisfy

1. Q5MQJ = It

2. BQj = Q= -,B' + QjAj + Qj+1 B+.

Here Bi is an I X I upper triangular matrix and Aj is I X I symmetric. The associated matrix Tk is
no longer tridiagonal but has semi-bandwidth I. Consequently all calculations involving T are
more costly than with simple Lanczos.

The original motivation for block versions of Lanczos was to allow the detection of multiple
eigenvalues of B. In exact arithmetic the simple Lanczos algorithm cannot distinguish multiplici-
ties but, in practice, roundoff error ensures that the right number of copies of an eigenvalue will
be found, but at the cost of a few extra Lanczos steps, provided that the Lanczos vectors are kept
orthogonal or semi-orthogonal. See [601.

Theoretically the simple Lanczos algorithm has the best approximation properties for a
given number of calls on the operator B.

However the increasing complexity of modern operating systems and storage management
has provided a powerful incentive to use block codes despite their increased cost per step. If the
triangular factor L in LDLt = K - tiM cannot be stored in the fast memory then considerable
transfer between primary and secondary storage is needed to invoke the operator B. In such cases
it is advantageous to let B operate on several vectors at once. The precise number is problem and
computer system dependent.

We can say that in each case there is a maximal number I such that the cost of applying B
to I vectors is within 10% of the cost of applying B to one vector. In a good number of cases I =
1 but, in general 1, as defined, is the correct block size - assuming that I n-vectors can be held in
primary storage along with sections of L.

The block Lanczos program embedded in MSC/NASTRAN Version 65 permits the user to
specify the block size. See [261,1391. Block Lanczos methods are described in [251, [261, [281, [451,
(631, 1871 & 1691.

S. LANCZOS VERSUS SUBSPACE ITERATION (SI)

A comparison between two implementations is presented in 1461 although the experiments
were made in 1980. Our only interest here is to illustrate the approximation power that comes
from using combinations of the power vectors instead of using just the most recent one.
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A three dimensional building frame was analyzed by the finite element method. There were
468 d.o.f. and the 60 dominant mode shapes were to be computed. This is more than 10% of the
spectrum. The interesting question is how many calls on the operator subroutine [ i.e. solve (
K - aM )r = Mq for r I are needed for the computation of these 60 eigenvectors.

Recall that SI has to choose the subspace size. A well-known rule selects 68 but for the given
application this is inefficient. We show below in Table I the number of operator calls required by
several programs.

Table It

q No. of steps Matrix-vector ops.

SI(basic) 68 47 3196
SI(accelerated) 68 36 2448
SI(accelerated) 20 80 1600
LANSO 1 120 120

t q - dimension of subspaces used.

Several points need to be made in order to see the significance of Table 1.
i) The program SI (accelerated) incorporates a lot of clever tricks for improving the perfor-

mance of SI. See 181 for the details. Consequently it is more instructive to consider a straight
forward implementation, namely SI (basic), to appreciate the theoretical improvement that
comes from using a Krylov subspace. Figures are not available for SI (basic) used with
q = 20 but we may infer that at least 2000 calls on the operator subroutine would be made.
Yet the bottom line of Table 1 shows that only 120 are needed by a rival method starting
from a random vector.

ii) SI (accelerated) used 12 different shifts ( i.e. factorizations of K - GAf ) to achieve its
improvements whereas LANSO used only one. However LANSO could also benefit from use
of more than one shift as is shown in (201. The benefit is in storage requirements, not calls
on the operator. For example, one could use 4 shifts in turn making about 31 or 32 calls on
the operator each time while picking up 15 eigenvectors. In this way there only needs to be
storage for 35 vectors. That means that larger problems could be solved completely inside
the fast memory. The selection of shifts is an interesting topic. See [19 and [35).

iii) There is a price to be paid for achieving this very small number of calls on the operator sub-
routine. It is necessary to keep all the Lanczos vectors somewhere because they are recalled
at the end to accumulate the eigenvectors. It turns out that they are needed more often
than that because of roundoff error. In the simplest implementations the new Lanczos vector
is explicitly orthogonalized against all previous Lanczos vectors at each step. This is overkill.
Nevertheless it is necessary to do the orthogonalization from time to time about ( one step
in four, on the average ) in order to keep the number of steps to a minimum.

More information on these topics is contained in [191, [211, 1481.
iv) It would be more informative to compare SI with a block Lanczos code but we are not aware

of such a trial.

9. SINGULAR M

The null space of At is also the nullspace of B - ( K - cfA )'At ( i.e. Afv - 0 if, and
only if, By = 0 ). Every nontrivial vector in this subspace .N(B) may be considered an eigenvec-
tor of B with eigenvalue oo. Complementary to N(B) is R(B), the range space of R. It is spanned
by the eigenvectors belonging to the finite eigenvalues.
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By restricting attention to R(B) the regular case is recovered. Of course R(B) is not known
but in exact arithmetic it is easy for all computed vectors to be kept in R(B). It suffices that the
starting vectors, for SI and Lanczos, be in R(B). Unfortunately rounding errors introduce into all
computed vectors components in N(B). With Lanczos these components grow steadily as the
computation proceeds but this feature is not at all evident because the M-inner product is blind to
such errors. Engineers are often tempted to stay in R(B) by using static condensation, see [321,
but this usually spoils the sparsity structure of the reduced matrices.

There is an easy cure. Each approximate eigenvector y may be projected back onto R(B) by
forming By and then normalizing. However this is expensive. If m approximate eigenvectors are
computed using only 2m calls on B then a further m calls on B to purify the eigenvectors adds
approximately 50% to the cost.

Is there a way to purify y without making any more calls on B ?

With the Lanczos algorithm there is a nice trick. See [481. It is easy to explain and imple-
ment.

Let ( $I, yi ) be an approximate eigenpair with

=i-- QMe =' ±'qk6(k).
k=1[

See section 7 for notation. The next, so-far-unused Lanczos vector qJ+1 is available. It turns out
that

By - yi1 + qj+1,8j+jai(i)

to within roundoff terms. Consequently it is only necessary to replace Y1 by

ff, := y + qi+,( fli.1si(j)/oi ).

The quantity iy+i(j) will already.be known since it provides an error bound on yi. There is no
need to have 8,(j)2 < unit roundoff ( from section 7 ) so the correction to yi is far from negligi-
ble. See the Table in (481 for the striking effect.

This modification makes a small improvement even when M is invertible. Consequently it
should be made automatically and there is no need for the program to know whether or not M is
singular. A beautiful result.

10. LOOKING AHEAD

The linear eigenvalue problem K - XM, with real eigenvalues, is in good shape but there
are many challenges ahead.

1. Efficient, robust techniques for quadratic eigenvalue problems ( as indicated in Section 3 ).
Standard practice encourages reduction to a linear problem, see [23] and [36] for example,
but this may not be optimal. See [661 and 1741.

2. Problems with complex conjugate pairs of eigenvalues ( as indicated in Section 3 ). The
matrices described in this paper can be extended to the nonsymmetric case. See 130], 172] for
SI and [241, [54] for Lanczos. Also see [64].

3. Exploiting vector computers to the full.

4. The effect of parallel computers.

That can wait for the next issue of State-of-the-Art!
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